翻訳と辞書
Words near each other
・ Bernstein Plays Brubeck Plays Bernstein
・ Bernstein polynomial
・ Bernstein Prize
・ Bernstein set
・ Bernstein v. United States
・ Bernstein's constant
・ Bernstein's Fish Grotto
・ Bernstein's inequality (mathematical analysis)
・ Bernstein's problem
・ Bernstein's theorem
・ Bernstein's theorem (approximation theory)
・ Bernstein's theorem (polynomials)
・ Bernstein's theorem on monotone functions
・ Bernstein-Rein
・ Bernstein/Beethoven
Bernstein–Kushnirenko theorem
・ Bernstein–Mahler cycle
・ Bernstein–Sato polynomial
・ Bernstein–von Mises theorem
・ Bernstein–Zelevinsky classification
・ Bernstorf
・ Bernstorfer pond
・ Bernstorff
・ Bernstorff Palace
・ Bernstorffstøtten
・ Bernstorffsvej station
・ Bernt
・ Bernt A. Nissen
・ Bernt Albert
・ Bernt Andersson


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bernstein–Kushnirenko theorem : ウィキペディア英語版
Bernstein–Kushnirenko theorem
Bernstein–Kushnirenko theorem (also known as BKK theorem or Bernstein–Khovanskii–Kushnirenko theorem 〔
*David A. Cox; J. Little; D. O'Shea Using algebraic geometry. Second edition. Graduate Texts in Mathematics, 185. Springer, 2005. xii+572 pp. ISBN 0-387-20706-6〕), proven by David Bernstein 〔D. N. Bernstein, "The number of roots of a system of equations", ''Funct. Anal. Appl.'' 9 (1975), 183–185〕 and Anatoli Kushnirenko 〔A. G. Kouchnirenko, "Polyhedres de Newton et nombres de Milnor", ''Invent. Math.'' 32 (1976), 1–31〕 in 1975, is a theorem in algebra. It claims that the number of non-zero complex solutions of a system of Laurent polynomial equations ''f''1 = 0, ..., ''f''''n'' = 0
is equal to the mixed volume of the Newton polytopes of ''f''1, ..., ''f''''n'', assuming that all non-zero coefficients of ''fn'' are generic.
More precise statement is as follows:
==Theorem statement==

Let A be a finite subset of \mathbb^n . Consider the subspace L_A of the Laurent polynomial algebra \mathbb(Laurent polynomials whose exponents are in A. That is:
L_A = \,
where c_\alpha \in \mathbb and for each \alpha = (a_1, \ldots, a_n) \in \mathbb^n we have used the shorthand notation
x^\alpha to write the monomial x_1^ \cdots x_n^ .
Now take n finite subsets A_1, \ldots, A_n with the corresponding subspaces of Laurent polynomials L_, \ldots, L_.
Consider a generic system of equations from these subspaces, that is:
f_1(x) = \ldots = f_n(x) = 0,
where each f_i is a generic element in the (finite dimensional vector space) L_.
The Bernstein–Kushnirenko theorem states that the number of solutions x \in (\mathbb \setminus 0)^n of such a system
is equal to n! V(\Delta_1, \ldots, V_n), where V denotes the Minkowski mixed volume and for each i,
\Delta_i is the convex hull of the finite set of points A_i. Clearly A_i is a
convex lattice polytope. It can be interpreted as the Newton polytope of a generic element of generic element of the subspace L_.
In particular, if all the sets A_i are the same A = A_1 = \cdots = A_n, then the number of solutions of a generic system of Laurent polynomials
from L_A is equal to n! vol(\Delta) where \Delta is the convex hull of A and vol is the usual n-dimensional Euclidean volume. Note that even though the volume of a lattice polytope is not necessarily an integer but it is an integer after multiplying by n!.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bernstein–Kushnirenko theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.